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SUMMARY 

 

Aiming to design signal processing tools that act locally in space, upon specific 

features of a signal, we compare two algorithms to remove or isolate individual 

anomalies in potential field profiles. The first method, based on multiscale edge 

analysis, leaves other features in the signal relatively untouched.  A second method, 

based on iterative lateral continuation and subtraction of anomalies, accounts for the 

influence of adjacent anomalies on one another.  This allows to transform a potential 

field profile into a number of single anomaly signals. Each single anomaly can then 

be individually processed, which considerably simplifies applications such as 

inversion and signal processing.  
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1 INTRODUCTION 

 

The analysis of one-dimensional profiles and two-dimensional images is common in 

many disciplines, including potential field analysis. A number of filters are available 

to sharpen, de-noise, or enhance the data. They are used to facilitate visual inspection 

by trained interpreters, or as pre-processing tools for subsequent numerical analysis. 

Traditionally, such filters are implemented in the Fourier domain and consequently 

act on all features in the signal simultaneously. 

 

Often there is the need to remove or isolate specific features from a signal. Several 

tools for the inversion of potential field data, for example, work more efficiently 

when applied to single anomalies. Alternatively, we may want to remove large 

features due to known errors in the data. Clearly, such an operation would be 

facilitated by a representation with good spatial localisation properties, which is 

nevertheless directly related to the physics of potential fields. 

 

This task is not trivial. First, we want to avoid a subjective decision on where a 

particular feature ends and where the adjacent feature starts. Second, we want the 

signal to be smooth around the selected feature. Third, we would like the selected 

feature to be a physically realistic potential field anomaly. Finally, we want to 

automate the process.  

 

Depending on what we wish to achieve, we may or may not want to affect features 

adjacent to the ones we aim to manipulate. For example, to remove processing 

artefacts or effects due to artificial sources, we want to leave adjacent features 

basically untouched. In other cases, we may want to account for the influence of 
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anomalies on one another, as, for example, in the case of pre-processing for 

numerical inversion in order to reconstruct underground structures. 

 

We describe two algorithms to address both tasks. First, we describe an algorithm in 

the wavelet domain that operates upon potential field signals to remove or isolate 

individual features, based upon the removal of multiscale edges and subsequent 

reconstruction. This algorithm leaves adjacent features basically untouched. A 

second algorithm, based on simple lateral continuation and subtractions of potential 

field effects, shows promising results in accounting for the effect of anomalies on one 

another. In this paper we show our first experiments on synthetic, noisy and real data, 

their results, and the directions they suggest for further work. 

 

 

2 FIRST METHOD: FEATURE REMOVAL BY MULTISCALE EDGE 

ANALYSIS  

 

2.1 Background to Multiscale Edge Analysis 

 

In an introductory paper on wavelet theory, Mallat and Zhong (1992) show that the 

information necessary to reconstruct a signal (either a one-dimensional profile or a 

two-dimensional image) is contained in a subset of its wavelet transform. The 

magnitudes of the wavelet transform at the multiscale edges represent such a subset.  

Here, we briefly review the theory of wavelets and define what multiscale edges are. 

A more complete development can be found in Mallat and Zhong (1992). 
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Wavelet analysis uses two related functions to analyse a signal, a smoothing function 

and a ‘mother’ wavelet. The smoothing function )(xθ , when convolved with the 

signal under study, can be viewed as an operation that removes features shorter than 

some characteristic length (which is a property of the function θ ). To be admissible 

for wavelet analysis, θ  must be non-negative, differentiable, and obey 

 

1)( =∫
ℜ

dxxθ  (2.1) 

The second function, often called “mother” wavelet function )(xψ , is taken as the 

first derivative of the smoothing function. In one dimension,  

 

)()( xDx xθψ =  (2.2) 

A signal can be analysed at multiple scales via the construction of scaled versions of 

θ  and ψ
 
as follows  

 

( ) 0),/(/1)( >= ssxsxs θθ , (2.3) 

and 

( ) )/(/1)( sxsxs ψψ = . (2.4) 

where s is the rescaling factor.  

 

Given a signal f(x), the wavelet transform is then defined by 

 

)]([),]([),( xfxsfWxsw sψ∗== ,  (2.5) 

where ( )∗  denotes convolution over the x domain. Then we see that 
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)]([))](([),]([ xfsDxsDfxsfW sxsx θθ ∗=∗=   (2.6)
 

which shows that the wavelet transform ),]([ xsfW  is, except for a scale factor s, the 

first derivative of the signal smoothed at the scale s.  

 

At each scale s, we define as local extrema the points at which the wavelet transform 

has a local maximum or a local minimum (with respect to x).  The local extrema of 

),]([ xsfW  thus correspond to rapid variations in ][ sf θ∗ , and hence can be 

interpreted as regions of rapidly changing intensity. In the signal processing literature 

these points are called ‘edges’. The collection of the edges at all scale is termed 

multiscale edges. 

 

Coming to the potential field applications we address in this paper (see Hornby et al. 

(1999)), we consider the magnitude of vertical gravity acceleration 
0zf  on a 

horizontal plane at height z=z0 due to a density distribution ρ , 

 

∫ ∫
∞− −+−+−

−
=

yx
z zzyyxx

dzzzzyxdydxGyxf
,
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2/32
0

22
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0

ρ .  (2.7) 

Here, x,y are the horizontal coordinates, G is the Newtonian gravitational constant, 

and the density distribution ρ  is assumed zero for z > 0 (positive z is “up”). The 

Green’s function for the magnitude of vertical acceleration is 

 

2/3222 )(
),,(

zyx
zzyxK
++

= .  (2.8) 

Since,  
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π2),,(
,
∫ =

yx

dydxzyxK  (2.9) 

for all z > 0, the integral of the function 

 
),,(

2
1),( zyxKyxz π

γ =
 
 (2.10) 

is unity for all z > 0. From Equations (2.9) and (2.10) and the facts that zγ  is non-

negative and differentiable, we see that zγ  is admissible as a smoothing function for 

a wavelet, with a corresponding scaled version 

)/,/(
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Equation (2.11) the two-dimensional analogue of Equation (2.6). In analysing 1D 

gravity profiles it is standard practise to assume the density distribution ρ  to be 

constant in the y direction and to integrate its effect of over y. The resulting 1D 

smoothing function is: 
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(2.12) 

 

We define the scale s=1 by defining θ  to be the normalised Green’s function 

associated with some specific height z0, that is . 

 

)/()()( 1
0

sxsxx szs θγθ −== . (2.13) 

The corresponding ‘mother’ wavelet is given by: 

 θψ xD= . (2.14) 

with scaling relation: 
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)/()( 1 sxsxs ψψ −=   (2.15) 

As a result, the wavelet transform of )(0 xf (the gravity acceleration at zero height) is 

given by 

 

)()/(

][
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xfDzz
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=
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γ
ψ

 (2.16) 

where s z z= / 0 .   

The wavelet transform of the gravity profiles can thus be calculated at scales s > 1 

from measurements at height 0zz =  as follows: 

1) Upward continue the measured profile to a level z sz= 0 , 

2) take the gradient of the profile along x and 

3) multiply the resulting profile by the factor 0z/zs = . 

No new processing software is needed to calculate these wavelet transforms since the 

operations listed above are part of the standard tools for any potential field 

practitioner.  

 
At this point, remembering that the collection of edges at all scales of the wavelet 

transform is named the multiscale edges, all is left to do is to pick the multiscale 

edges at the location where the wavelet transform has a local maximum or minimum. 

Thus, a point i along a profile is defined a edge if 

iiii ffandff << +− 11   or  iiii ffandff >> +− 11  

 

For one-dimensional profiles the multiscale edges group themselves into strings in 

the scale-space wavelet domain. Their positions and shapes are strongly related to the 
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locations and shapes of individual features in the profile. This provides a visually 

intuitive representation of the signal and of the relation between features within the 

signal at different scales. As an example, in Fig. 1 we show a gravity profile (top) 

and its multiscale edges (middle). The edges form strings that arise from the major 

anomalies in the profile. In the wavelet literature these strings are called branches, 

whilst the collection of branches is called an edge tree. The correspondence between 

features in the profile and edge branches is due to the localisation property of 

wavelets. This suggests that by manipulating some edge branches and reconstructing 

the profile, the features corresponding to such branches could be modified, thus 

allowing a signal processing tool to operate locally on specific parts of the image, 

leaving the rest minimally perturbed. 

 

Mallat and Zhong (1992) tested the idea for noise suppression applications. They 

discriminated between branches due to noise and branches due to main features in an 

image by studying their behaviour at different scales, and suppressed the former ones 

before reconstructing the signal. Lu et al. (1994) employed the same idea by 

artificially amplifying the magnitude of the edge branches before image 

reconstruction. In this way they obtained much sharper features in medical images.  

 

In this work, we extend such results. Our application differs from noise removal since 

the features we attempt to remove are of large magnitude and spatial extent. Unlike 

high-frequency noise, the edges of large features exist at a large number of scales. 

Also, unlike the application by Lu et al. (1994), we try to remove (and consequently 

to manipulate the edges of) individual features only. This generates distortion in the 

wavelet representation that needs to be treated with care.  
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2.2 Reconstruction Algorithm from Multiscale Edges 

 

The crucial part in the design of multiscale-edge-based signal processing is the 

algorithm that reconstructs the signal from its multiscale edges. The process of going 

from a signal to its edge tree and back can be seen as a mathematical transform in 

itself, much like a Fourier or wavelet transform. For the sake of clarity we will call 

this transform a Multiscale Edge Transform (MET), as opposed to the standard 

Wavelet Transform (WT). A discussion of the accuracy of the MET and its 

computational cost can be found in Mallat and Zhong (1992) and Mallat (1998).  

 

The MET itself requires the intermediate step of a traditional WT as summarised in 

Fig. 2. The first step builds the WT of the signal using upward continuation and 

differentiation. From the WT we extract the multiscale edges as local extrema of the 

WT. These two steps have been described above in details. This represents the 

forward MET. In the inverse MET we first reconstruct a proper WT from the 

multiscale edges and then perform an inverse WT to go back to the signal.  The 

crucial part of the inverse MET relevant to this paper is the algorithm that 

reconstructs the WT of a signal from the MET of the signal.  

 

In Mallat and Zhong (1992), this is achieved by requiring that the WT be 

simultaneously in two subsets, namely: 

1) the set of scale-space functions having extrema only at the multiscale edges and 

wavelet magnitudes equal to those on the multiscale edges − 1P  is the operator 

that maps any scale-space function into this set; 
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2) the space of all possible wavelet transforms − 2P  is the projection onto this 

subspace of scale-space functions.  

The reconstruction from multiscale edges is usually achieved by iterating the 

application of the two operators ( 12PP ) to some initial guess.  

 

The projection 2P  is achieved by passing a candidate scale-space function though the 

reproducing kernel. This consists of an inverse WT followed by a forward WT. Being 

an orthogonal projection, the reproducing kernel operator produces the element of the 

space of possible WT functions that is closest to the candidate scale-space function it 

acted upon (e.g. Kaiser 1994, p87; Hornby et al, 1999, p195). 

 

Unfortunately, operator 1P  is not so easily represented by a straightforward 

projection operator due to the non-convex nature of the constraints represented by the 

multiscale edges. It is instead approximated by monotonically interpolating between 

the multiscale edges along the x-direction (see Lu, 1997, p. 18). Such an interpolation 

over x is applied independently at each scale. We call the result of such 

operator ),(ˆ xsw . In the iterative process ),(ˆ xsw  is taken as a candidate for the 

‘correct’ WT ),( xsw . The WT reproducing kernel projection 2P  is then applied to 

),(ˆ xsw  to create a function that is closest to ),(ˆ xsw  within the set of ‘correct’ WT.  

 

In practice, 1P  is constructed through a series of three operators: 

• sampling ( SP ), 

• monotonic interpolation between edges ( IP ) and  

• "wiggle removal" ( MP ).  
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Let’s define as }{ s
ix the x position of the edge i ( Ni ...1= , where N is the number of 

edges at scale s) at scale s. IP  is an interpolator that interpolates monotonically over 

x in each interval ),[ 1
s
i

s
i xx +  between two consecutive multiscale edges. (Notice that 

the interval ),[ 1
s
i

s
i xx +  is written with two different brackets, because we assume s

ix 1+  

to belong to the ‘next’ interval). SP  represents the operation of sampling the values 

of a function of scale-space at the multiscale edges }{ s
ix . The third operator MP  is 

defined in each x-interval ),[ 1
s
i

s
i xx +  by  
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1

1

.  (2.17) 

 

which is applied independently at each scale s. The operation MP  removes wiggles 

from the intervals ),[ 1
s
i

s
i xx +  by replacing "humps" or "dips" in the graph of ),(ˆ xsw  

(the current best estimate of the ‘correct’ ),( xsw ) by straight horizontal lines, 

yielding a function MP ),(ˆ xsw  that is monotonic over x for all the intervals between 

multiscale edges. We now have all the elements required for our iteration scheme. 

This can be described as follows: 

1) given ),( xsww =  as the actual wavelet transform, generate the MET we wish 

to invert as wPS , which represents the wavelet transform sampled at the 

positions }{ s
ix  of the multiscale edges.   

2)  Interpolate wPS  monotonically over x, by applying wPwPP SISI =   
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3) project this into the set of wavelet transforms to obtain our first 

approximation ),(ˆ xsw  to w  by performing wPP SI2 . This function may now 

suffer two inconsistencies. It may neither have the correct value at the 

multiscale edges, nor be x-monotonic between multiscale edges. 

Consequently: 

4) force agreement between the values of ),(ˆ xsw  and w  at the multiscale edges 

by a) sampling the current approximation ( wPP SI2 ) at the multiscale edges 

using SP , b) subtracting these sample values from the actual MET values 

( w ), c) interpolating the differences monotonically, and d) adding the IP  

interpolated difference back to wPP SI2 .  

5) Finally, enforce monotonicity over x between edges by acting on this 

corrected approximation with MP . We now have a new function that matches 

the values at the multiscale edges and is monotonic between them. 

6)  act again upon 2P to form the next approximation to w . 

 This defines the iterative scheme 

 

( )( )
( )( )n

SI
n

M

n
SSI

n
M

n

wwPwPP

wPwPPwPPw

−+=

−+=+

2

2
1

  (2.18) 

 

where 00 =w . Substituting the actual WT ),( xsww = into Equation (2.18) yields the 

self consistency requirement wPPw M2= , which is indeed the case because wPw M=  

by construction of MP , and the fact that 2P  is the reproducing operator for the WT. 

Defining the error by nn wwe −= , one finds that the errors obey 
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( )( )n
SI

n
MM

n ePwPwPPe +−=+
2

1  , (2.19) 

 

which does not necessarily simplify further due to the non-linearity of MP .  

 

The MET inversion algorithm has been well tested and good results are reported in 

the literature (see, for example, Lu et al., 1994). Our own experience suggests the 

algorithm be stable and robust. Usually a satisfactory reconstruction is achieved 

within 20 iterations. An example of the quality of reconstruction can be seen in Fig. 

1. The top plate shows a synthetic gravity profile. The bottom frame shows the 

profile reconstructed using only the edges shown in the middle plate. The two 

profiles are basically identical. Our next step is to test the effectiveness of the MET 

as a tool for signal processing. 

 

 

2.3 Feature Removal 

 

We apply the algorithm presented in the above section to the removal of an 

individual anomaly in the gravity profile in Fig. 3a. In Fig. 3b we can see the edge 

tree. We want to remove the anomaly on the left. In order to do so, we remove the 

edge branches on the left, which correspond to the left anomaly. The remaining edge 

tree is presented in Fig. 3c. The result after reconstructing the profile is shown in Fig. 

3d. We can see that the left anomaly is not completely removed. A small bump 

remains in the profile. We will discuss the reason for this and suggest an 

improvement later. For the moment we note that the magnitude of the remaining 

bump is quite small considering the rather brutal nature of the edge manipulation.  
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Fig. 3e shows the difference between the profiles in Figs 3a and 3d. We can see the 

isolation of the anomaly on the left. Most importantly, we see that in place of the 

anomaly on the right only minor oscillations occur. This shows that the right anomaly 

has been left almost untouched by the process. Depending on the purpose of the 

processing, this may or may not be entirely desirable, as we shall subsequently point 

out. 

 

It should be emphasised once more that a similar result would not be possible with 

traditional signal processing in the Fourier domain. Any filter applied to one anomaly 

would act in the same fashion on any other anomaly in the profile. This approach also 

has advantages when compared to manual isolation. First, we avoid a subjective 

judgement of where one anomaly ends and where the adjacent one starts. Second, the 

algorithm implicitly imposes smoothness in the profile, by suppressing spurious 

edges.  

 

 

3 SECOND METHOD: FEATURE REMOVAL BY LATERAL 

CONTINUATION  

 

In the previous section we showed how the multiscale edge method allows the 

removal of one anomaly from the profile while leaving the adjacent anomaly 

basically untouched. This feature could be beneficial for a number of image 

processing applications, such as the removal of artefacts or of responses due to 

artificial sources. If, however, we aim to remove the response of a natural source, 

then we may be interested in also removing the influence that such a source has on 

adjacent features. Basically, we may want to reconstruct the remaining profile as if 
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the source generating the anomaly to be removed was not present. We illustrate this 

process next. Before we do that, we should notice that the classic ambiguity inherent 

in potential field studies does not allow a unique solution for such a problem. In this 

work, we assume that causative sources are simple ‘Euclidean shapes’ of constant 

density.  

 

Let us suppose that we want to remove the leftmost feature of the signal in Fig. 4a 

(this is the same signal we used in the test of the MET method).  The method that we 

propose can be summarised in three steps. 

 

1) Continue the right hand side anomaly laterally to the left as if the left anomaly was 

not present (Fig. 4b), (details on how to continue the anomaly laterally are given 

next) and then subtract this approximation from the original signal. The result can be 

seen in Fig. 4c. This represents our first guess at the reconstruction of the left hand 

side anomaly. 

 

2) Continue the left anomaly laterally to the right (Fig. 4d). This step is necessary in 

order to account for the correct value of the anomaly edges by approximating the 

right flank of the left hand side anomaly (see below). Subtract this approximation 

from the original signal (Fig. 4e). This represents our first guess at the reconstruction 

of the right hand side anomaly. 

 

3) Iterate steps 1 and 2 until the difference between the profiles obtained at the end 

of two consecutive iterations falls below a certain threshold.  
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The rationale of the algorithm is that, at each iteration, part of the effect of one 

anomaly is removed from the adjacent one. This, in turn, allows for a better 

approximation of the anomaly itself, and consequently a more accurate lateral 

extension at the next iteration. This proceeds until convergence is reached. For nicely 

separated anomalies, as in this example, 3-5 iterations suffice. In more complicated 

cases we may want to perform a few tens iterations. 

 

Clearly, the crucial element of this algorithm is the lateral continuation of the 

anomaly. We choose to approximate this part of the profile by the gravity response to 

a point source. The reason can be explained with the help of Fig. 5. Despite the ‘real’ 

source generating the profile is spatially extended (rectangular block in Fig. 5b), a 

point source, laterally displaced from the centroid of the block, gives a reasonable 

approximation of the left-hand side of the profile (thick line). 

  

The gravity response of a point source can be written as: 

( )
( ) 22 hcx

hmxf
+−

=  (3.1) 

where c is the horizontal position of the point source, h its depth, and m is its mass. 

Returning to the example in Fig. 4, we calculate the three parameters c, h, and m, for 

the extrapolation of the left flank of the right hand side anomaly, using three points 

along the profile (see Fig. 6). The first point is the barycentre of the two edges 

involved: the right edge of the left anomaly and the left edge of the central anomaly. 

Each edge is given a weight proportional to the width of the anomaly it belongs to. 

The width of the anomaly is approximated by the spacing between its edges at the 

finest scale. The third point is the edge of the main feature (right hand side anomaly 

in this case), and the second point lies in between the first and third points.  
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This results in the following analytical formulae to calculate the three parameters c, h 

and m, from the points ( ) ( ) ( )332211 ,,,,, yxyxyx : 

 

( ) ( ) ( )
( ) ( ) ( )213313223211

213
2
3132

2
2321

2
1

2
1

yyyxyyyxyyyx
yyyxyyyxyyyx

c
−+−+−
−+−+−

⋅=   (3.2) 

 

( ) ( )
21

2
11

2
22

yy
cxycxy

h
−

−−−
=       (3.3) 

 

( )( )
h

hcxym
22

11 +−
=        (3.4) 

 

The final result of the separation of the anomalies in Fig. 4 is illustrated in Fig. 7. 

Figs 7b and 7c show the right hand side and left hand side anomalies, respectively, 

after separation.  For ease of comparison Fig. 7a shows again the original anomaly. 

 

In order to be useful, the algorithm needs to reconstruct a good approximation of the 

‘true’ anomaly, (that is of the anomaly as if the source generating the anomaly to be 

removed was not present), and be robust to noise. Fig. 8a shows the same anomaly 

used in the test in Fig. 1, to which a considerable amount of noise has been added. 

We used a random white noise whose maximum amplitude is 15% of the signal 

amplitude. In the Figure, the dashed lines show the noisy signal, the thick lines show 

the signals after removal of the left hand side anomaly and the dotted lines show the 

noise-free ‘true’ signal due to the source which generated the right hand side 

anomaly. As can be seen from Fig. 8a, the isolated and true anomalies are hardly 
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distinguishable. In Figs 8b-d we show the same test case, in which the sources 

generating the two anomalies are brought progressively closer, resulting in stronger 

anomaly interference.   Departure between ‘true’ and reconstructed signal is 

noticeable only in the last frame (8d), when the anomalies are very close. We believe 

that a more sophisticated method than a single point source to reconstruct the flank of 

the main anomaly could improve the performance of the algorithm in this situation, 

as will be discussed later. 

 

The algorithm robustness to noise is not surprising. First, the anomaly is extended 

laterally accounting mostly for the information contained in the signal edges. These 

are the most stable points in the profile (see Hornby et al, 1999). Secondly, the lateral 

extension is the result of a point source approximation, which also is little affected by 

the signal noise. 

 

 

4 AUTOMATING THE ALGORITHMS 

 

A crucial feature of both algorithms is that they can be easily automated. This not 

only makes their use simple and fast, but also removes any subjectivity in choosing 

where the anomalies should be separated. The key to the automatization lies in the 

concept of edge and in its unique relation to the main anomalies in a signal. 

 

Once an anomaly is chosen (by selecting a point close to its peak, for example), 

simple edge detection algorithms can easily determine the edges of the corresponding 

anomaly. The successive steps differ for the two algorithms: 
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1) in the case of the MET, we need to follow the edge branches arising from the 

two  edges of the anomaly, and remove then completely. Following the edge 

branches is easy to implement since they follow a continuous curve in scale 

space. 

 

2) In the case of the lateral continuation algorithm, we simply need to determine 

the adjacent anomaly from which the current anomaly needs to be removed. 

This simply implies progressing along the profile until a new set of edges is 

found.  

 

In case of noisy profiles, several edges may arise from the same anomaly at small 

wavelet scales. This problem can easily be circumvented by looking at the edges at a 

coarser scale (at which all noise induced edges have died out) and then follow the 

corresponding edge branches backward. 

 

 

5 DISCUSSION 

 

Multiscale edge-based signal processing works by manipulating some branches in the 

edge tree and reconstructing the signal from the modified MET. In our applications 

we have generally removed edge branches completely. When we do this, we distort 

the MET. It is true that the value of the MET at a given edge point and given scale 

contains mainly information about features within a spatial region of approximately 

that scale surrounding that edge point. However, since our Green's function-based 

wavelets are not completely local, edge points also contain some information about 

more distant features. When we delete some edge branches in an attempt to remove 
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the corresponding features, some of the information about those features persists in 

surrounding edge branches that we do not remove.  This is especially true of 

remaining edge points that are close to a removed edge point, where "close" is 

relative to the scale of the edge point being removed. When we try to reconstruct a 

WT from the distorted MET, the reproducing kernel operator 2P  tends to re-insert 

edge features (at reduced amplitude) near the location where we tried to eliminate 

them. 

 

Re-establishing x-monotonicity between edges through the inclusion of MP  generally 

works very well in inverting an exact MET. However, the algorithm cannot always 

eliminate oscillations arising from a pseudo-MET distorted by edge removal. The 

problem arises through the fact that n
M

n
MM wPPwPPP )1()( 22 −=−  does not 

approach zero. In this case MP  continues to remove oscillations, and 2P  continues to 

replace them. One possible solution is to avoid exactly fitting the remaining edges in 

the distorted MET. We should instead use the distorted MET as a prior hypothesis on 

the edges, and allow this to compete with the monotonicity and WT properties 

expressed by MP  and 2P  respectively. Moreover, in the feature isolation application, 

we should also include constraints on the asymptotics and edge content of both the 

isolated feature and residual profiles. In this way we might achieve the unmixing of 

physically realisable signals. 

 

In our opinion, the results we have presented for MET filtering are analogous to 

poorly-applied Fourier analysis using abrupt filters and no tapering or padding of the 

data. Attention to filter design and data preparation mitigate the well-known artefacts 

of poorly-applied Fourier processing. We feel that with a better understanding of 
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MET processing, the artefacts created by the MET filters presented here can be 

similarly tamed. 

 

Improvements can also be achieved in the iterative method via lateral continuation. 

One avenue involves taking advantage of potential field non-uniqueness in order to 

generate sources that are better able to model the anomalies than the point source 

employed in this study. Then, by removing such ‘ad hoc’ source models, we may 

improve the anomaly isolation.  

 

 

5.1 Applications 

 

In the following we show two potential applications of the algorithm to inversion and 

signal processing. In both cases we show the benefit of analysing each individual 

anomaly separately against the single analysis of the overall profile. In both cases we 

aim at isolating anomalies by also removing the effect of adjacent anomalies. 

Consequently the algorithm involving lateral continuation will be used. 

 

5.2 Inversion 

 

In the examples described in Fig. 8, we showed the good performance of the 

algorithm in reconstructing the ‘true’ anomaly.  There, the quality of the match was 

estimated visually. But the real test of whether the approximation of the ‘true’ 

anomaly is satisfactory lies in whether it affects its interpretation (which is, 

ultimately, the reconstruction of its causative source). We test this via an inversion 

exercise.  
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Fig. 9a shows the same synthetic gravity profile used in previous tests. Fig. 9c shows 

its causative sources. Fig. 9b shows the profile with added noise (same amount as in 

previous tests). Fig. 9d shows the result of inverting the noisy profile. Here we 

assumed we know the causative sources have rectangular shape, and we inverted for 

their size, position and densities. Under this assumption the problem has a unique 

solution. We chose this approach since we wanted to avoid non-uniqueness confusing 

the evaluation of the algorithm performance. This is a simple inversion, and as 

expected the result closely matches the ‘true’ solution. 

 

Fig. 9e shows the right hand side anomaly as reconstructed by the algorithm, while 

Fig. 9g shows the result of its inversion. Similarly Fig. 9h shows the result of 

inverting the left hand side anomaly (9f). It is quite clear from this example that the 

two isolated anomalies retained enough information to allow the correct 

reconstruction of the causative source, which is ultimately the purpose of any 

potential field analysis. Table 1 shows the exact parameters of the true sources and 

the numerical results of the three inversions. 

 

In this simple example there is little benefit in separating the anomalies before 

inversion. In more complicated profiles however, there may be a considerably 

computational advantage in turning a single multi source inversion into several single 

source ones. Basically, this offers a way to deal with the ‘curse of dimensionality’ 

inherent in all inversion problems, by turning a high dimensional problem into 

several smaller dimensional ones. 
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Table I. Parameters defining the true sources (First row). Result of the inversion of 

the overall profile (second row). Result of the inversion of the individual anomalies 

(Third and fourth rows). 

Left hand side source Right hand side source 

 X1 X2 Z1 Z2 ρ X1 X2 Z1 Z2 ρ 

True 

Values 

60 70 5 10 .25 140 190 5 10 .25 

Inversion 

of overall 

profle 

60.

13 

70.

05 

5.0

9 

10.05 .253

7 

139.

94 

189.

58 

5.00 10.0

6 

.249

1 

Inversion 

of left 

anomaly 

59.

68 

70.

44 

5.3

9 

10.36 0.24      

Inversion 

of right 

anomaly 

     139.

93 

189.

64 

5.04 10.0

6 

0.25

08 

 

 

5.3 Signal processing 

 

Moreau et al (1997) and Hornby et al (1999) have shown that wavelet analysis, and 

multiscale edge analysis in particular, is suitable for the analysis of potential field 

data. More recently, Holden et al (2001) and Poulet et al (2001) have shown that the 

location of the multiscales edges can be used to reconstruct the approximate location 

of causative sources in gravity inversion. Boschetti et al (2001) have shown that both 

location and amplitude of the multiscale edges can be used in conjunction with a 
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downward continuation process to reconstruct the depth-to-the-top of gravity sources, 

while Sailhac et al (2000) applied similar concepts to reconstruct the approximate 

representation of sources in magnetic surveys.  

 

All these applications require information about the edges corresponding to a single 

anomaly at several scales (that is, at several different upward continuation heights). 

Depending on the horizontal separation between two anomalies, their signals will 

interfere at varying levels of upward continuation. When this happens, the position 

and amplitude of the multiscale edges will no longer carry information from one 

single anomaly (or mostly from a single anomaly) but, inevitably, about their 

superimposition. This is shown in Fig. 10. Fig. 10b shows a synthetic gravity profile. 

Fig. 10a shows its edge tree. At low scales (between 1 to 25 approximately) we can 

see 2 edges for each anomaly, as expected. After scale 40, approximately, we can no 

longer see 4 edges but only 2. Both anomalies have merged into a single one. Now 

the edges give information about the superimposition of the two anomalies. In 

between these two ranges, we have the transition zone which is usually very non-

linear. In this example, we clearly can not use the full edge tree to infer the location 

and depth of the right hand side anomaly, since after scale 40 the edges contain 

information about the left hand side anomaly as well. Worse still, the edges of the left 

hand side anomaly are strongly distorted and die out after scale 30 approximately.  

 

In order to circumvent the problem we can isolate the anomalies and reconstruct the 

correct edge trees. This is shown in Fig. 10c,d. Now all the edge-based algorithms 

mentioned above can be applied to both anomalies and the result will be minimally 

affected by the presence of the adjacent feature. 
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5.4 Application to Real Data 

 

We conclude by showing the performance of the algorithm on a real data set. We 

selected a North South profile from the gravity map over Australia (see Fig. 11). The 

profile cuts perpendicularly to some very strong anomalies approximately in the 

center of the continent. Fig. 12a shows the profile we extracted. We want to isolate 

the part characterized by the strong signal variation. The result can be seen in Fig. 

12b. Notice that, unlike all synthetic cases shown above, here the areas of the profile 

we want to remove are not characterized by a single clearly defined anomaly, but 

rather by an oscillating signal, with no clearly isolated feature. Nevertheless the 

algorithm worked successfully confirming again its robustness. 

 

 

6 CONCLUSIONS 

 

We propose two methods to isolate or remove anomalies from potential field data. 

One method, based on multiscale edge analysis, allows the removal of anomalies 

while leaving adjacent features basically untouched. The second method, based on 

iterative lateral continuation, accounts for the influence of adjacent features on one 

another. The choice of method depends upon the purpose of the analysis. 

 

 Ultimately, we envisage the use of the algorithms in conjunction with a visualisation 

package in which specific features can be selected and processed in real time, prior to 

further numerical inversion. 
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FIGURE LEGENDS 

 

Figure 1. Gravity profile containing 2 anomalies (top). The set of multiscale edges 

(middle). Profile reconstructed via MET (bottom).  

 

Figure 2. Sketch of the MET. Notice that the full MET process goes through a 

standard wavelet transform. 

 

Figure 3. (a) Synthetic gravity profile and its edge tree (b). (c) Edge tree after 

removal of the braches belong to the left hand side anomaly. (d) Right hand side 

anomaly after application of MET. (e) Difference between profile (a) and (d). 

 

Figure 4. Description of the first step of the lateral continuation removal algorithm. 

(a) Original profile. (b) The right hand side anomaly is extrapolated laterally. (c) 

Profile in (b) is subtracted from the original profile leaving the first guess of the left 

hand side anomaly. (d) The left hand side anomaly is laterally extended to account 

for the edge values. (e) Profile in (d) is subtracted from the original profile, leaving 

the first guess of the right hand side anomaly. 

 

Figure 5. (a) The gravity profile (dashed line) generated by the block source in (b). 

The left flank of the anomaly (dark line) is well approximated by a point source 

laterally displaced from the centroid of the block.  

 

Figure 6. Location of the three points necessary to isolate the main anomaly.  
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Figure 7. (a) Original profile. (b) profile after removal of the left anomaly and (c) 

right hand side anomaly. 

 

Figure 8. (a) Gravity profile to which a random white noise whose maximum 

amplitude is 15% of the signal amplitude was added (dashed), reconstructed signal 

(thick line) and ‘true’ signal (dotted). Even in the presence of heavy noise, 

reconstructed and true profile depart considerably only when the two anomaly are 

very close and interfere strongly.  

 

Figure 9. (a) Synthetic gravity profile and (c) its causative sources. (b) profile with 

added noise. (d) result of inverting the noisy profile. (e) right hand side anomaly as 

reconstructed by the algorithm, and (g) result of its inversion. (f) left hand side 

anomaly as reconstructed by the algorithm, and (h) result of its inversion.  

 

Figure 10. (b) Original profile and its edge tree (a). (d) right hand side anomaly and 

its edge tree (c). (f) left hand side anomaly and its edge tree (e).  

 

Figure 11. Gravity map of the Australian continent. The white dashed lines represent 

the profile we extracted for analysis. 

 

Figure 12. (a) Real gravity profile extracted from the gravity map over the Australia 

continent. The strong anomalies in the centre of the continent after being isolated (b). 
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TABLES 

 

Table I. Parameters defining the true sources (First row). Result of the inversion of 

the overall profile (second row). Result of the inversion of the individual anomalies 

(Third and fourth rows). 

Left hand side source Right hand side source 

 X1 X2 Z1 Z2 ρ X1 X2 Z1 Z2 ρ 

True 

Values 

60 70 5 10 .25 140 190 5 10 .25 

Inversion 

of overall 

profle 

60.

13 

70.

05 

5.0

9 

10.05 .253

7 

139.

94 

189.

58 

5.00 10.0

6 

.249

1 

Inversion 

of left 

anomaly 

59.

68 

70.

44 

5.3

9 

10.36 0.24      

Inversion 

of right 

anomaly 

     139.

93 

189.

64 

5.04 10.0

6 

0.25

08 
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